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In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones
glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-
grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to
calculate the local elasticity tensor and to quantify the deviation from linear elasticity �local Hooke’s law� at
different coarse-graining scales. From the results a clear picture emerges of an amorphous material with
strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke’s law at scales larger than
a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a
composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomo-
geneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous
material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field
appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear
strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic re-
arrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term
dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this
local parameter as a predictor of subsequent local plastic activity is also discussed.
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I. INTRODUCTION

It is commonly acknowledged that the mechanical prop-
erties and the rheology of a wide class of amorphous glassy
materials involve localized structural rearrangements of the
order of five interatomic distances involving typically 100
particles in three dimensions or 20 in two dimensions �1,2�.
These events are frequently compared with the rearrange-
ments that take place in aging glassy materials where local
events are thermally activated �3,4�. It has been proposed
that these rearrangements can organize during a mechanical
deformation through a cascade mechanism to form shear
bands �5–9�. This phenomenon of strain localization has
been observed experimentally in alloys, metallic glasses,
polymers, granular media, foams, and colloids �10–12� as
well as in numerous simulations, both of model systems such
as Lennard-Jones glasses �1,13–15�, as in more realistic
simulations �16–19�. On a theoretical level various current
models of the rheology of glasses predict reasonably well the
macroscopic mechanical properties of these materials
�5,6,20–34�. These models generally involve the consider-
ation of zones with prescribed elastoplastic properties, whose
microscopic identification remains, however, elusive. So de-
spite a recent and rich literature concerning the connection
between the structure of the glass, the intrinsic dynamics of
these irreversible events and the dynamical heterogeneity in
amorphous systems �9,14,15,32,35–45�, questions such as
what type of, where, and how local plastic rearrangement
occur in a deformed glass remain unanswered.

A common general idea is that the deformation will take
place in “weak” zones, somehow characterized by abnor-

mally low elastic constants and increased mobility. This pic-
ture of the glass as composed of a patchwork of “rigid” rela-
tively strongly bonded �but amorphous� domains separated
by “soft” regions �walls� has long been postulated �46� and is
at the heart of many theoretical models of the glass transition
�47�. Moreover within this framework it appears tempting to
relate the dynamical heterogeneities observed in glassy ma-
terials near and below the glass transition temperature to the
spatially inhomogeneous elastic constant network. Experi-
mental evidence of the heterogeneous glass structure is
shown in �48� and models �49,50� including fluctuating elas-
tic moduli have been introduced in the last two decades to
describe some acoustical �boson peak �51�� and thermal
�specific-heat anomalies �52–54�� properties of glasses. In
order to check such assumptions, and attempt to relate struc-
ture and dynamics in amorphous materials, a new route was
recently opened by calculating local elastic constants in such
heterogeneous material �55�. Simulation methods for the cal-
culation of the elastic constants of solids can be classified in
two groups. One can either use equilibrium fluctuation for-
mulas, as described in �55�, or perform explicit deformations
and derive these constants from the stress-strain response of
the material. In this paper we implement the deformation
approach in a framework of continuum mechanics developed
in �56�, which extends the applicability of classical con-
tinuum mechanics to smaller scales. While this method re-
quires several computations to calculate the different elastic
constants, it remains simple and accurate, and has the advan-
tage of giving a systematic estimate of the deviation from
linear elasticity as a function of the coarse-graining scale.

Section II presents the system under study, a well charac-
terized two-dimensional �2D� Lennard-Jones system, and the
method used to obtain the local elastic moduli. The results
for the moduli and the resulting picture of the glass structure
are described in Sec. III. Finally, in Sec. IV, we show how*michel.tsamados@lpmcn.univ-lyon1.fr
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the local elastic inhomogeneities are connected to the plastic
activity as our system undergoes quasistatic shear deforma-
tion, and the relation between local elastic moduli and local
dynamics is also explored.

II. METHODS

A. Sample preparation

The systems studied throughout this paper are slightly
polydisperse two-dimensional Lennard-Jones glasses, de-
scribed in detail in �57�. The interaction energy between two
particles is 4���

�i+� j

2r �12− �
�i+� j

2r �6� with �i as the diameter of
particle i. Our typical sample contains 10 000 particles in a
square simulation box, with a polydispersity of 5% on the
size of the particles. All numerical values in the following
are expressed in Lennard-Jones units �LJU�, where the aver-
age particle diameter and the interaction energy are equal to
unity. The corresponding density of the glass �=0.925 LJU
was chosen to minimize the initial pressure of the quenched
amorphous solid to P=0.25. The quenching procedure, from
the liquid state to well below the glass transition tempera-
ture, which produces the initial configurations, consists of a
sequence of thermal steps—at temperatures T=1.0, 0.5, 0.1,
0.05, 0.01, 0.005, and 0.001—each lasting 100 LJU and ther-
mostatted through simple velocity rescaling. This quench is
followed by an energy minimization scheme to bring the
system at a local energy minimum and, at zero temperature,
this protocol is also described in detail in �57�. Two protocols
were used to shear the material. In protocol one, two layers
of particles with thickness of 2 LJU are singled out and as-
sumed to constitute parallel solid walls that will impose the
deformation to the system. The resulting cell has a thickness
Ly=100 and a width Lx=104. The configuration is submitted
to shear by applying constant displacement steps �ux to the
particles of the upper wall, corresponding to an elementary
strain of about �=5�10−5. Between two displacement steps
the entire system is relaxed with fixed walls into its nearest
equilibrium position. The total strain of the sample under
these rigid wall boundary conditions is �total=1.65 �i.e.,
165% deformation�. In protocol two the system of thickness
Ly=104 and width Lx=104 is sheared with Lees-Edwards
�LE� periodic boundary conditions. The elementary strain
step during the shear is here �=2.5�10−5. The total strain
under these Lees-Edwards boundary conditions is �total=0.5
�i.e., 50% deformation�. To check possible size effects a se-
ries of glasses of different sizes �containing up to 250 000
particles� were produced under the same quenching proce-
dure and analyzed in the very early linear domain ��total
�10−6�.

In the following section we derive the coarse-grained
�CG� method used to calculate the local elastic tensor C as
well as other local CG fields such as the strain tensor �, the
stress tensor �, the density �. This method is applied to con-
figurations in the transient regime ��2.5�10−2 as well as in
the fully developed plastic regime ��2.5�10−2. The do-
mains analyzed are shown in Fig. 1.

B. Measuring local elastic constants

As stated in Sec. I, various methods have been proposed
in the literature for the numerical calculation of elastic con-

stants. The elastic constants are defined �58� as the coeffi-
cients C	
�� of the second-order expansion of the strain-
energy density as a function of the local Green-Lagrange
strain components

F − Fo

V
= C	


o �	
 +
1

2
C	
���	
��� + ¯ , �1�

or as the first-order expansion of the local stress components
�	
 as a function of the local linear strain �59�

�	
 = C	

o + C	
��� ���

lin + ¯ , �2�

with

�	
 =
1

V

�F

��	

lin .

This second definition can be seen as a linear local fit of the
energy and is known as Hooke’s law. In case of an unstressed
solid, the two definitions are strictly equivalent but in case of
a solid with initial stresses �Co�0 as in our Lennard-Jones
glasses�, the difference between the two components C	
��

and C	
��� depends on the quenched stress components due
to the nonlinear dependence of � as a function of �lin �58�. In
our case, we have checked that the contribution of quenched
stresses can indeed be neglected �60� but this formal differ-
ence must be mentioned.

At finite temperature one can use a fluctuation type
method to determine Eq. �1�, and for a system at equilibrium
the elastic modulus tensor and the stress fluctuations are re-
lated through the following fluctuation formula �61–63�:

C	
�� = C	
��
Born + 2NkBT��	
�
� + �	��
��

−
V0

kBT
��t̂	
t̂��� − �t̂	
��t̂���� . �3�

The term in square brackets �here the brackets denote a
thermal average� is called the fluctuation term of the micro-
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FIG. 1. Stress-strain mechanical response of the 2D polydis-
perse Lennard-Jones model glass under shear, indicating the sepa-
ration between an elastic loading phase and a plastic flow behavior.
Rigid �protocol one� and Lees-Edwards �protocol two� boundary
conditions are, respectively, represented in thick and thin black
lines.
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scopic stress tensor t̂��—i.e., the Irving Kirkwood stress,
which simplifies in the athermal limit to the expression given
in Eq. �8�. The Born term C	
��

Born corresponds to the instanta-
neous elastic modulus for a sample under a uniform and
infinitesimal strain. Equation �3� has been used for a long
time to compute elastic constants of amorphous materials
�64� but only recently applied to the calculation of local
elastic constants in amorphous polymers �55�, in metallic
glasses �65�, in composites �66�, as well as in small samples
of Lennard-Jones glasses �67� above the glass transition tem-
perature. If one is interested, on the other hand, in the me-
chanical properties of a material at zero temperature, one
must use the zero-temperature limit of Eq. �3�, which was
shown in �62� to be

C	
�� = C	
��
Born − �� 	
H−1�� ��. �4�

Here

�� i,�� � � ����

�r�i
�

→0
�5�

can be understood as the forces that would result from an
elementary homogeneous deformation of all the particles in
the strain direction �� and where H is the dynamical matrix
of second derivatives of the potential energy with respect to
atomic positions. At zero temperature, the “relaxation-
fluctuation” term �second term on the right-hand side of Eq.
�4�� was shown �57� to account for an important fraction of
the absolute value of elastic constants in amorphous systems
�this is also the case in crystals with a complex unit cell�.
This failure of the Born term alone �first term on the right-
hand side of Eq. �3�� to accurately describe the mechanical
properties of the material can be traced back to the existence
of a nonaffine deformation field, which stores part of the
elastic energy. Unfortunately, the direct evaluation of the
relaxation-fluctuation term is not straightforward as it neces-
sitates the inversion of the Hessian matrix. Hence the actual
procedure to accurately determine the elastic constants of
athermal systems generally consists in carrying out explicitly
an affine deformation of all coordinates and a corresponding
deformation of the simulation cell, then letting the atomic
positions relax toward the nearest energy minimum within
the deformed cell. One calculates the corresponding local
stress increments and linear strain components, and can sub-
sequently recover the elastic tensor coefficients by solving
Hooke’s law �2�.

In this paper we propose extending this method to the
calculation of the local elastic constants at different scales of
coarse graining. Following �56�, we present first the coarse-
grained expressions that we use to measure locally the stress
and strain fields; we then pursue with the derivation of the
local elastic tensor.

C. Local strain tensor

The simplest and crudest approach is the so-called Voigt
assumption where one assumes that the strain is homoge-
neous in the sample. While this approach is exact for simple
unit-cell crystals, it cannot be valid for disordered materials

and leads to wrong estimates of the elastic constants as dis-
cussed above. It was proposed in Ref. �20� as an improve-
ment on the mean-field assumption, that the local strain
should be determined from a best fit of the actual particle
displacements within a small subsystem to those generated
by an adjustable strain tensor. Other possibilities for defining
a local strain include the consideration of a dyadic tensor
built on the links between neighboring particles �68�. In this
study we will use an alternative definition proposed in �56�,
according to which the �linear� strain tensor is written in
terms of a coarse-grained displacement field:

�	

lin �r,t� =

1

2
	 �u	

lin�r,t�
�r


+
�u


lin�r,t�
�r	


 , �6�

where the superscript “lin” denotes the linear order in the
displacements. The linear displacement ulin�r , t� is defined as
the linear dependence on the displacement of the individual
particles, which is of the temporal integration of the coarse-
grained velocity. The latest is computed by way of the mo-
mentum density whose coarse-grained expression satisfies
the mass conservation equation. As shown in Ref. �56�, by
integration of the coarse-grained velocity field u̇�r , t�, one
obtains the following expression for the linear order in dis-
placement:

ulin�r,t� =

�
i
miui�t���r − ri�t��

�
j
mj��r − r j�t��

, �7�

where mi is the mass of the atom i and where ��r� is the
coarse-grained function, for example, as in all calculations
done in this paper, a Gaussian of width W. ulin�r , t� is a
continuous and differentiable function of space that allows
computation of �lin by spatial derivation. The difference
ulin�ri , t�−ui�t�, where ui is the actual displacement of the
particle i, is the fluctuating part of the displacement �69�. It
cannot be negligible when the displacement of the particles
is strongly varying with space, as it is shown at very small
scales in our Lennard-Jones glasses �69�.

D. Local stress tensor

The most commonly used definition is the atomic stress
introduced by Irving and Kirkwood �70� as

�	
,i � −
1

Vi
�

j

f i/j	�t�rij
�t� , �8�

Vi being the volume of the Voronoi cell associated with atom
i, and f i/j	 the force exerted by atom j on atom i in the
direction 	. If the velocity term is neglected this formula
when averaged over a sufficiently large sample corresponds
to the Cauchy stress �which measures the actual mechanical
force per unit area�, at smaller length scales although it does
not, strictly speaking, verify the momentum conservation
equation.

An expression for the stress components that satisfies the
momentum conservation in the framework of the previous
coarse graining has been obtained in �56�
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�	
�r,t� = −
1

2�
i

�
j��i�

f i/j	�t�rij
�t��
0

1

ds��r − ri�t� + srij�t�� ,

�9�

with � the coarse-graining function. This expression has also
been used recently in �71�.

E. Derivation of linear elasticity—local elastic tensor

Now having calculated the stress and strain tensors locally
we are in a position to derive the corresponding components
of the local elastic tensor as in the case of a macroscopic
deformation. This presupposes that Eq. �2� remains valid at a
local level and one can, therefore, apply the same symmetry
arguments as in the macroscopic case to reduce the number
of independent coefficients of the elasticity tensor. Since the
linear strain is symmetric by definition, and the stress is sym-
metric in the absence of torques, there are at most nine con-
stants in 2D. As discussed in �58,59� the existence of a
strain-energy function from which the equations of elasticity
can be derived by variational methods implies a further sym-
metry of the elastic tensor: C	
��=C��	
, reducing the num-
ber of independent thermodynamic stiffness to six in 2D. To
extract the six independent elastic coefficients, it necessitates
at least two independent deformation modes on our sample.
Each deformation provides three linear equations for the
moduli. The general stress-strain relation in terms of matri-
ces is written as follows, using a Voigt type notation. For
each coarse-graining scales W, the coarse-grained stress and
strain components are measured on a grid, and are expressed,

respectively, as the 3�1 column vectors T̂ and Ê, and one

has in 2D the relation T̂= ĈÊ that means

 �xx

�yy

�2�xy
� = Cxxxx Cxxyy Cxxxy

Cxxyy Cyyyy Cyyxy

Cxxxy Cyyxy Cxyxy
� �xx

�yy

�2�xy
� . �10�

This expression can be compared with the expression ob-
tained in the framework of homogeneous and isotropic linear
elasticity,

 �xx

�yy

�2�xy
� = � + 2� � 0

� � + 2� 0

0 0 2�
� �xx

�yy

�2�xy
� , �11�

where � is the shear modulus and � is the Lamé coefficient
���+�� is the inverse of the compressibility modulus in 2D�.

The use of two such deformations, therefore, closes the
system of unknowns, giving six equations for six unknowns.
Nevertheless, in order to estimate the deviation from linear
elasticity, the numerical procedure used here consists of ap-
plying three different uniform deformation modes, two
uniaxial stretching parallel to the x and y axes, and a simple
shear parallel to the x axis. This procedure provides nine
linear equations for the moduli. The stress components that
are not used in this procedure are then calculated using these
elastic moduli, and their values compared to those computed
directly using Eq. �9�. As a measure of the extent to which
the system is described by linear elasticity at a given position

and for a given value of the coarse-graining scale W, we use
the root mean square � of the relative differences between
the stress components calculated by employing the measured
moduli and the directly measured exact values �normalized
by the norm of the exact values�.

For each configuration we calculate also the three eigen-
values ci and eigenvectors Ei for i=1,2 ,3 of the local tensor

Ĉ. The comparison between Eqs. �10� and �11� would pro-
vide c1=2�, c2=2�, and c3=2��+�� in a homogeneous and
isotropic system. We will now discuss the results obtained in
our model Lennard-Jones glass, as a function of the coarse-
graining scale W.

III. ANALYSIS OF THE LOCAL MODULI

The domain of validity of Hooke’s law can now be mea-
sured by the W dependence of the error function �. It is
shown in Fig. 2. This figure shows that the error � goes
progressively to zero, thus validating Hooke’s law at large
coarse-graining scales W. However, this convergence obeys a
power-law ��W−1.32 and, therefore, does not exhibit a char-
acteristic scale above which Hooke’s law would be true.
Nevertheless, we can see in Fig. 2 that the error � is already
less than 1% for W�5. It means that, above W=5, the error
made in computing the stress components using the elastic
modulus is less than a hundred of the actual value of the
stress, which is far smaller than the contribution of quenched
stresses, for example. We can thus consider that the system
obeys Hooke’s law reasonably well on scales larger than W
=5. Below that scale, different factors could explain the de-
parture from Hooke’s law: the first one is the coarse graining.
Below W=5 it has been shown in a previous paper �69� that
the contribution of the coarse-graining deformation to the
actual one is small. The contribution of the fluctuating field
cannot be neglected, giving rise to high values of the real
strain and, therefore, a significant decrease in the elastic
moduli. In fact, the fluctuating field is not differentiable so
that it is not possible in this case to compute quantitatively
the linear strain components. It is one of the interests when

1 10 100w
0.0001

0.001
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0.1

∆

N=2000 (10 confs.)
N=10000 (8 confs.)
N=10000 (LE - 1 conf.)
N=40000 (2 confs.)
N=216225
0.12 W

-1.35

FIG. 2. �Color online� Deviation � from linear elasticity as a
function of the coarse-graining parameter W. For W�5 Hooke’s
law is satisfied locally with more than 1% accuracy.
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using the coarse-graining field to deal with differentiable dis-
placements fields. The fluctuating field appears thus as a
“noise field.” An additional strongly fluctuating term should
then be taken into account for W�5 in an attempt to de-
scribe accurately the mechanical behavior of the material.
Another contribution to the departure from Hooke’s law at
small scale is due to the coupling to second and third neigh-
bors outside the volume element. This contribution �not
taken into account here since we are restricted to first-order
derivatives in the displacement field� could be introduced by
considering the contribution of higher order derivatives of
the deformation in the framework of linear but long-range
elasticity �72�. This paper is devoted to the measurement of
elastic moduli; thus we will leave these considerations for
further studies, and focus now on the computation of elastic
moduli in the domain of validity, that is for W�5.

Figure 3�a� shows the average value of each of the eigen-

values �ci� of Ĉ as a function of the coarse-graining scale W.
The notation c̄ stands for a spatial averaging over the sample
and angular brackets stand for a statistical averaging over
different configurations. The spatial averaging is obtained by
computing the elastic moduli on a grid with elements of
width W /2. The number of the different samples used in the
statistical averaging—for each given size L—is the same as
indicated in Fig. 2. We get first the average value of the

�L / �W /2��2 values obtained on the grid, for each sample.
Then we average the values obtained on the different
samples. Figure 3�a� shows a progressive convergence for
large W to the values obtained in the framework of homoge-
neous and isotropic linear elasticity. Indeed, for very large W,
�c1� and �c2� go to the same value 2��22 obtained also by
looking at the macroscopic response of the system to various
mechanical solicitations, and �c3� converges to twice the in-
verse compressibility 2��+���102 measured as well by the
global response of the sample �57,73�. The method used here
to compute the elastic moduli of the system for large W
appears thus to be consistent with measurements of the glo-
bal response of the system.

The convergence of the average local elastic moduli to
their macroscopic value is independent of the system lateral
size L as long as W�0.5L. For larger W, the boundary con-
ditions �Lees-Edwards or fixed walls� may affect the conver-
gence and cause finite-size effects. As shown in Fig. 3�b�, the
moduli decay approximately as 1 /W	 to their limit value,
with 	�0.87 for c1 and c2, and 	�2 for c3. The inverse
compressibility converges thus far more quickly to its mac-
roscopic value than the shear moduli. The difference between
the macroscopic value and the spatial average of the small
scale measurements of ci �2��22 while �c1�W=5���18, for
example� is due to the inhomogeneous strain field. By look-
ing at ��C�−C�� /C� �Fig. 3�b��, it appears that for W�5, the
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FIG. 3. �Color online� �a� The three eigenvalues of the elasticity tensor averaged spatially as a function of the coarse-grain length W. �b�
Log-log plot of the convergence of the three eigenvalues to the limit values obtained by a coarse graining on the whole system size. �c�
Anisotropy parameter �a as a function of the coarse-graining scale W.
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discrepancy to the macroscopic value is already less than 1%
for �c3�, while it becomes less than 10% only for W�10, for
�c1� and �c2�. We conclude that for 5�W�10 the moduli are
well defined but the measured values are not compatible with
homogeneous elasticity since the different moduli involved
at different coarse-graining scales have different scale depen-
dence. We did not find any solid explanation for the non-
trivial power law appearing in this convergence. It appears
that the convergence of the inverse compressibility is in-
versely proportional to the volume W2, and the convergence
of the shear moduli closer to a surface effect �W. As a side
note we speculate that in three-dimensional samples these
power-law convergences should be, respectively, inversely
proportional to �W3 and �W2—i.e., volume and surface ef-
fects. Note also that one of the shear moduli is smaller than
the limiting value while the other is larger. This difference
between smooth and hard directions will now allow us to
quantify the anisotropy of the local mechanical response.

The anisotropy measured at small scale can be quantified
by the ratio ��c2�− �c1�� / �2�� that goes to zero for large W.
We call it the anisotropy parameter �a. It is shown in Fig.
3�c�. It can be noticed that c1 and c2 always obey �c1��2�
and �c2��2�, so �a�0. The decay of the anisotropy param-
eter �a �Fig. 3�c�� obeys also a power-law �1 /W0.92, close to
1 /W. These power-law decays prevent us to define properly
a characteristic scale above which the homogeneous and iso-
tropic behavior is recovered. In Fig. 3�c�, we see that the
anisotropy parameter becomes less than 10% for W�20
only. It means that, below W=20, it is possible to find locally
a well defined direction associated with a very low local
shear modulus. At this scale, the anisotropy in the mechani-
cal response cannot be neglected.

The preferred direction of strain is given locally by the
analysis of the eigenvectors E1, E2, and E3. Each eigenvector
contains the three distinct elements of a 2D strain tensor
whose eigendirections e1 and e2 �e1 and e2 are orthogonal�
are computed. We plot on Fig. 4 the distribution of the local
quantity Si= �tr�Ei��2 /2 tr�Ei

2�, which takes the value of zero
if the deformation is pure shear and one for pure dilatation.
One observes as expected that the two deformations associ-

ated with the two lowest eigenvalues are of pure shear type
while the third deformation is a pure compression.

In order to explore more deeply the inhomogeneities of
the elastic moduli inside the system, we will now study their
distribution as a function of W, and then their spatial corre-
lations. The distributions of c1, c2, and c3 are shown in Fig. 5
for various W and for N=216 225. First, we can see in these
distributions that zones with negative moduli can appear if
the coarse-graining scale W is sufficiently small, as already
observed in �55�. It is not in contradiction with the mechani-
cal stability of our system since the local elastic moduli com-
puted here are only part of the second-order derivative of the
total mechanical energy due to the coarse-graining, as well as
to the nontrivial dependence of the nonaffine local deforma-
tion as a function of the applied displacement. The rescaling
of the distributions by W is also shown on Fig. 5. It is very
good for sufficiently large values of W �typically W�10�.
The variance of the distribution as a function of W is shown
in the inset of Fig. 5�d�. It decays as 1 /W and is always
smaller than the corresponding average value. It is thus im-
possible to identify a characteristic length scale by the com-
parison of the variance and the average value of the moduli
ci.

The decay of the relative fluctuations �c / �c��1 /W for a
given W can be interpreted in the framework of a sum of
uncorrelated variables with finite variance, the distribution
being nearly Gaussian. The apparent rescaling of the distri-
bution thus corresponds to a sum of spatially uncorrelated
variables. Note that, while this ratio is very small for c3 for
every value of W ��c3 /c3�0.01 for W�5�, it is much larger
for c1 ��c1 /c1�10% while W�15 for N=216 225�. We can
thus conclude that the inhomogeneity is far more pronounced
in the shear modulus c1 than in the compressibility c3. The
inhomogeneity of c1 modulus is even far from being negli-
gible while W�15.

By comparing this result with the result obtained for the
isotropy, we can conclude that at a scale W�20 the system
becomes reasonably isotropic and homogeneous. Below this
scale, it is homogeneous but not yet isotropic for 15�W
�20. All these results are summarized in Table I. Of course,
these values must be nuanced by the fact that the criteria
used are a little arbitrary and simply related with a compari-
son of orders of magnitude. No characteristic length scale
can be clearly identified since all the quantities checked here
have a power-law dependence with the scaling length W.

The distribution of the elastic moduli has been checked
along the full deformation process. We can thus compare the
distribution of moduli during elastic deformation and during
plastic flow. We can also compare these distributions before
and after a plastic rearrangement occurred in the system. The
plastic rearrangements are identified here as in �1,74� by the
decrease in the total stress as a function of the applied strain.
We see in Fig. 6 that the distribution is progressively dis-
placed to smaller values of the shear modulus, before it
reaches a plastic plateau, but remains globally unchanged
during all the plastic flow. During the plastic flow, the differ-
ence between the distributions appears on extremal values.
Before a plastic rearrangement occurs, the smallest value of
c1 �open circle in Fig. 7� is generally smaller than after the
event occurred �full circle�. The distribution of the smallest
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value of this elastic modulus is shown in the inset of Fig. 7
for the full deformation process. It confirms that the smallest
values are smaller before a plastic rearrangement than after.
We will come back to this observation in Sec. IV.

Finally, it can be interesting to analyze in details the spa-
tial correlations of the moduli in our systems. The spatial
correlations of the lowest modulus c1 are shown in Fig. 8 for
various W and N=216 225. The spatial correlations go to
zero at large distances. It shows spatial oscillations with very

small amplitude, which are visible while W�10, but disap-
pear for W�10. The distance between successive maxima is
about a few tens of interatomic distances but seems to be size
dependent. Unfortunately, our data are not sufficiently pre-
cise to allow us to characterize this size dependence. For r
�3W only, the spatial correlations are controlled by the W
dependence of the coarse-graining function �see Fig. 8�b��. It
can be fitted by a Gaussian �exp�−�r /W�2 /1.7�. We can thus
conclude that the spatial correlations are dominated by the W

TABLE I. Analysis at different coarse-graining length scales W.

W 0 5 10 15 20

Hooke’s law NO YES YES YES YES

Homogeneity

�c̄�−2�
2� �10% NO NO YES YES YES

�c
�c̄� �10% NO NO NO YES YES

Isotropy

c2−c1

2� �10% NO NO NO NO YES
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dependence of the coarse-graining function at small dis-
tances but displays oscillations at larger scales. The domain
for which these oscillations are visible �W�10� corresponds
to the domain in which the heterogeneity in the distribution
of the moduli is noticeable. All these results show that a
coarse graining at scales W�10 will loose information �on
the heterogeneities, on the spatial correlations, even on the
local anisotropy�. In the rest of this paper we will thus use
only the value W=5 for the coarse-graining scale.

IV. STRUCTURE AND DYNAMICS

A. Structural relaxation

In the previous section we have shown how the system
could be decomposed into regions of different elastic stiff-
ness. We now discuss how this elastic heterogeneity is re-
lated with the “dynamics” of the system undergoing quasi-
static plastic shear deformation. To this end, we obtained the

local elastic parameter c1 for configurations of the sheared
system separated by an incremental strain of ���5�10−5,
during a set of intervals each within a total strain of �10% in
protocol one, under rigid boundary conditions, and �6% in
protocol two, under Lees-Edwards boundary conditions. The
coarse-graining scale W=5 was chosen in all the subsequent
analysis as the limit of applicability of linear elasticity. We
recall that at this scale, �c1��W=5��18.

One can first quantify the global relaxation time �strain�
associated with the field c1 by calculating the spatially
averaged two-point correlation function C����
= �c1�r ,�+���c1�r ,���, where the notation Ā stands for a
spatial average over the sample and angular brackets stand
for a statistical average over the strain origins �. In order to
relate the relaxation strain to the local rigidity of the material
we also calculate the two-point autocorrelation function of
the shear modulus conditioned by its initial value. For each
sampled rigidity c1 we plot the rescaled autocorrelation func-
tion C���� /C�0�1/2. In Fig. 9 we see that the functions
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C���� /C�0�1/2 tends in the limit of large strains to the limit-
ing value c1, independently of the initial value of the shear
modulus c1. Therefore, in the stationary plastic flow regime
the local shear modulus c1�r ,�+��� becomes uncorrelated
for sufficiently large strains �� from its value at the origin
c1�r ,��, showing that in this model glass the local elasticity
map does not phase separate into permanently rigid and soft
regions but rather evolves dynamically under shear. In the
inset of Fig. 9 we associate with each sampled rigidity c1 a
relaxation strain �relax�c1� defined as the strain for which the
rescaled autocorrelation function has decayed by half. We
see that �relax�c1� is a monotonic increasing function of the
local rigidity parameter, which saturates for C�0�1/2�c1. We
see also that softer regions �C�0�1/2�c1� relax more quickly
than rigid ones.

To our knowledge this result represents one of the first
numerical evidence of a clear relation between a structural
order parameter and the dynamics in a glassy system. The
measurement of the local elasticity map presents the advan-
tage to be independent of the specificity of the glass under
study, requiring only the measure of a local stress and strain.
This result confirms the description introduced in Sec. III of
the material as a composite material made of soft fast relax-
ing zones �for c1�c1� and of rigid stable zones �for c1�c1�.
As seen in Fig. 9 the strain associated with the rigid “scaf-
folding” of the material is found to be of the order of �relax
�1.5%. This value is similar to the strain necessary to enter
the fully plastic regime �plastic�2% �see Fig. 1�. As sug-
gested in Fig. 10 where the relative number of soft zones
evolves in parallel with the total shear stress and reaches a
maximum percentage ��60%� before a large plastic event,
one can also see this typical strain as the necessary strain
required to achieve percolation through the material of soft
zones, i.e., when the material’s rigid scaffolding is no longer

connected �15�. Figure 11 shows the evolution of the rigid
scaffolding over a total strain of �0.9%.

This relaxation strain of the order of 1.5% can be com-
pared with the typical strain separating two irreversible rear-
rangements �1� in the sample ��event�0.1%. An estimate of
the number of plastic rearrangements required to renew the
rigid scaffolding of the material can, therefore, be given as
�relax /��event�15; hence typically 15 events for 10 000 par-
ticles.

B. Relation between the local elasticity map, the local
mobility, and the long-time dynamical heterogeneity

We have characterized the dynamics of the underlying
structure in terms of the shear rigidity order parameter. We
want now to see how this structure is coupled to the displace-
ment field in the sheared material.

In order to describe the relation between the local elastic-
ity of the material and its dynamics, one can try to quantify
the connection between the local domains presenting small
local modulus and an increased mobility of the particles in
these domains. A vast literature has grown in the last five
years on the connection between static structural properties
and dynamical heterogeneities in glass formers. While differ-
ent approaches have partially failed to support such a link
between local structure �such as local free volume, local in-
herent state potential energy, defects, Voronoi tessellation,
local stress or strain, etc.� and dynamics, Widmer-Cooper
and Harrowell �42� have recently shown that the spatially
heterogeneous “local Debye-Waller �DW� factor” �defined as
the mean-squared vibration amplitude of a molecule over a
time of approximately ten periods of oscillation of this mol-
ecule� in a two-dimensional glass forming mixture could be
mapped perfectly on the locally measured dynamical propen-
sity that relates to the long term dynamical heterogeneities in
the material. Berthier and Jack �75� pursued this discussion
showing how the influence of structure on dynamics is much
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FIG. 11. Shear modulus divided in rigid �c1�c1, black� and soft zones �c1�c1, white� for different macroscopic strains. �a�–�f�
correspond to a macroscopic strain of �a� 2.5%, �b� 2.55%, �c� 2.65%, �d� 2.7%, �e� 3.25%, and �f� 3.4%.
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stronger on large length scales than on shorter ones, and that
the choice of the coarse-graining scale in the structure-
dynamics problem is crucial. Here we make connection with
this literature and claim that the local-order parameter c1 is a
good candidate to establish a relation between structure and
dynamics. One can understand this assertion by the fact that
c1 and the DW factor contain a similar physical information
in probing the local stiffness of the material. Of course in a
quasistatic deformation one cannot simply measure a local
DW factor on short-time scales and the order parameter c1 is
a good measure of the stiffness of a region. Following
Widmer-Cooper and Harrowell in �42� we define a quasi-
static analog of the dynamic propensity as ��ri���−ri�0��2�,
where ri���−ri�0� is the displacement without the affine con-
tribution due the macroscopic strain �. Unlike the original
definition of the dynamical propensity in �42�, the average is
taken here over all the particles in a given range of the order
parameter c1 and not over an isoconfigurational ensemble of
N-particle trajectories. Figure 12 shows that the order param-
eter c1 is indeed related to the long term propensity and that
soft regions �c1�c1� present an increased nonaffine mobility
in comparison with more rigid regions of the material �c1
�c1�.

The relation between mobility �plasticity� and low shear
modulus is illustrated in Fig. 13 by looking at how the spatial
distribution of these two quantities are mapping onto each
other. In this figure, the cumulative nonaffine displacement
field �that is essentially irreversible� appears to nucleate from
the initial reference state near the soft zones of the material
and to grow in a cooperative manner up to the point where
the material fails macroscopically, forming a vertical shear
band across the sample. In Fig. 14 we distinguish between
mobile and immobile particles �left of Fig. 14�, and between
soft and rigid zones �right of Fig. 14�. The mobile and frozen
particles are identified somehow artificially by the amplitude
of the transverse nonaffine displacement: �y�0.02 for a to-

tal strain of 1% and �y�0.02, respectively. The soft zones
are identified by c1�c1 and the rigid zones by c1�c1. In
Fig. 14, we plot the distribution of shear modulus associated
with each group of particles �mobile and frozen�, and the
distribution of nonaffine displacements for the rigid and soft
portions of the sample. Figure 14 confirms the visual impres-
sion of Fig. 13 that most of the displacement is concentrated
in the soft regions of the material and conversely that mobile
particles are located in soft zones.

We showed that most of the displacement occurs in soft
zones. As seen in Fig. 13 the dynamics in the sheared glass is
not trivial with regions that concentrate most of the nonaffine
displacement field and others that remain quiescent. The ap-
pearance of bursts of mobility seems, therefore, strongly dic-
tated by the underlying heterogeneous elastic structure of the
material and one cannot understand cooperative dynamics in
the glass without considering this underlying structure. We
would like now to address the question of the degree of
cooperativity of this mobility field in the material and its
relation with the local elasticity map. In the literature the
dynamical heterogeneity of aging ��41�� or sheared
��74,76,77�� glassy systems is commonly quantified by a
four-point correlation function defined as

�4�k,�� =
1

N
��Fs�k,��2� − �Fs�k,���2� , �12�

where Fs�k ,�� is the self-intermediate scattering function
�SISF� defined by

Fs�k,�� = �
i

cos�k�ri��� − ri�0��� . �13�

It is important to note here that the symmetry of the me-
chanical deformation introduces an anisotropy in k space in
the relaxation of the SISF Fs�k ,��. Typically one has at the
first peak �kP� of the static structure factor a relaxation strain
of Fs�kx=kP ,�� of about 0.2% while for Fs�ky =kP ,�� the
relaxation strain is of about 1% �see Fig. 15�a��. This differ-
ence can be attributed to the formation of shear bands in our
model glass, preferentially along the x axis, therefore, in-
creasing the mobility along this axis. These results seem to
be in contradiction with recently reported similar studies in a
model binary supercooled liquid, where an isotropic relax-
ation is reported for Fs�k ,��. It would be interesting to
clarify if these discrepancies could be attributed to the ther-
mal agitation present in �77� and absent in our athermal
simulations. Also in Fig. 15�a� in order to relate mobility and
structure we calculate the SISF for different regions of the
material according to their rigidity. One sees in the inset of
Fig. 15�a� that the relaxation strain associated with each
SISF grows linearly with the local shear modulus below the
average shear modulus �c1�c1�18� and then reaches a pla-
teau at a value of about �relax�0.85%. Again this provides a
clear evidence of the connection between the structural order
parameter c1 and the dynamical response of the material. It
cuts the sample into soft �c1�c1� and rigid �c1�c1� zones.

In Fig. 15�b� we see in �4�ky =kP , t� that the number of
particles evolving in a cooperative way grows linearly with
strain from zero to �500 particles for LE boundary condi-
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(a) (b)

(c) (d)

(e) (f)

FIG. 13. We represent the local map of the shear modulus at the same macroscopic strain values. These values correspond to the onset
of plastic rearrangement of the material. These maps are superimposed with the nonaffine displacement accumulated from �a�. �a�–�f�
correspond to a macroscopic strain of �a� 2.5%, �b� 2.55%, �c� 2.65%, �d� 2.77%, �e� 3.25%, and �f� 3.4%. Note that the nonaffine field is
multiplied by a factor of 300 on �b� to illustrate the very strong correlation of the elastic nonaffine field with the elasticity map for small
incremental strain intervals �here 0.05%�.
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tions and to �100 for rigid boundary conditions. It is indeed
system size-dependent and evolves as Nf�� /L�, as shown in
�60,78,79�.

The maximum cooperativity is achieved at a strain of �
�2% in the LE case as well as in the rigid walls case.
Theoretical predictions concerning the four-point correlation
function are reported in �41�, where the authors focus their
studies on static supercooled liquids near the glass transition
temperature. Whether or not one can identify the dynamical
correlation length scale to the typical spatial extent of the
soft zones of the material remains unclear from this analysis
and requires further studies. We note that the typical strain at
which the cooperativity �4�ky =kP , t� is maximal ��max
�2%� does not correspond exactly to the structural
	-relaxation strain �	�1% defined as Fs�ky =kP ,�	�=1 /e
calculated for the same wave vector, but the order of magni-
tude is actually the same for the systems studied here.

C. Predicting plastic activity

To understand the dynamics in the soft phase and more
generally the rheology �or mechanical response� of the ma-

terial, one would like to understand what first triggers the
nucleation source points �local plastic events� at some spe-
cific locations and second how these local rearrangements
interact in a cooperative manner.

In the previous section we have analyzed the coupling
between the elasticity map and the nonaffine field in the
material, and claimed that, for sufficiently large strain, the
nonaffine field �for example, shown in Fig. 13� is essentially
irreversible �plastic�. We checked this assertion by compar-
ing for each particle in the system the total nonaffine dis-
placement and the purely irreversible displacement. The ir-
reversible displacement field is defined as the residual
displacement field resulting when, after each macroscopic
elementary strain increment ���5�10−5 �in Fig. 1�, the
“virtual” reverse shear −�� is applied on the system. For a
purely reversible deformation this field should cancel exactly
but here one observes that, for most incremental deformation
steps, a nonvanishing residual irreversible displacement field
is present. With this numerical protocol we can extract for
each particle i of the system the purely irreversible displace-
ment �rirrev

i from the total nonaffine displacement �rna
i .

Hence for each particle i the total nonaffine displacement
over a macroscopic strain ��=�n��n can be decomposed
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into �rna
i ����=�n�rirrev

i ���n�+�n�rrev
i ���n�. The relative

error ��rna
i ����−�rirrev

i ����� / ��rna
i ����� averaged over all

particle is obtained and being less than 5% confirms our
assumption that the nonaffine displacement is dominated by
an irreversible plastic contribution. Based on this observation
we describe here the link between plasticity in the material
and the local elasticity map. To obtain this information we
study here the dynamics of the local rigidity c1 calculated on
each particle over a strain range of 10%.

Figure 16 illustrates the evolution of the coarse-grained
modulus c1 on a particle that experiences plastic activity �i.e.,
that rearranges over the strain range�. We have superimposed
the quantity DBF—BF standing for best fit—defined in �20�,
which evaluates the degree of local deviation from affinity.
This parameter was found to very accurately distinguish be-
tween plasticlike zone �DBF�1� and normal elastic zones
�DBF�10−4�. Figure 17�a� shows the average behavior of the
same quantity c1, averaged for all plastic events. The result,
which is typical of the dynamics of c1, shows that before a
plastic event occurs on the site the modulus c1 decreases over
a typical strain interval of about 0.2% to become zero or
even negative at the plastic irreversible event, where the non-
affine displacement becomes important �DBF�1�. Then the
local structure is relaxed and the local modulus gets a higher
value �c1�18 after the event�. Note that this value c1�18 is
smaller than the macroscopic value for 2� but corresponds
to the average value c̄1 of the shear modulus at the scale W
=5 of description. Just before a plastic event, the local shear
modulus is very low c1�c1. The average decrease in c1 be-
fore a plastic event is fitted approximately by an exponential
decay to its limit value. We have no explanation for the mo-
ment for this exponential fit. It shows a characteristic strain
�0.2%.

It is interesting to compare, in our system, this order pa-
rameter with other possible predictors of plasticity intro-
duced in the literature. These parameters are the local stress
�23,28,80�, the local deformation strain �26,34�, the local free
volume �20,81,82�, coordinance defects �39,83�, as well as
other local criteria derived from macroscopic mechanics

such as Tresca local yield criterion or a local Mohr-Coulomb
�84,85�. In Fig. 17 we have summarized the evolution of
some of these fields measured locally in our model glass at
the sites that undergo plastic rearrangement before, during,
and after the relaxation takes place. The curves are averaged
over all plastic events over the strain studied ��1000
events�. It shows that the density and the inverse compress-
ibility are not affected by the plastic event. The shear stress
is affected since it decreases suddenly after the plastic event
occurred; but before the plastic event, the variation in shear
stress is very small, and on a very small strain range. Thus
the conclusion appearing from the above analysis is that the
local shear modulus c1 is the best criterion in our Lennard-
Jones glasses in identifying zones that are about to rearrange.

In order to identify the effect of a very low initial local
shear modulus c1�c1 on the plastic activity over a larger
strain span, we have calculated the shifted plastic activity
A�i ,�macro ;�shift ,�span� measured at each site i and every step
in the macroscopic strain �macro, and defined as the integral
over a strain range �span of typically a few percent of the
local quantity DBF starting from a shifted value of the mac-
roscopic strain �macro+�shift from the actual macroscopic to-
tal strain where c1 is measured. Note that �shift and �span are
adjustable parameters.

In Fig. 16 we illustrate the meaning of this two param-
eters. �span is the range over which the plastic activity is
recorded; in the limiting case of �span→� one should obtain
the average activity of the glass former. �shift allows subtrac-
tion of a systematic bias associated with the conditional
probability to have an increased plastic activity for low ini-
tial values of c1. In Fig. 16 we also plot the correlation be-
tween the average activity and c1 for different �span. The
plastic activity is a number that counts the number of signifi-
cant plastic events. It is incremented by one, as soon as
DBF�0.2. It appears that the probability to encounter a plas-
tic event is larger for originally soft regions �c1�c1�. More-
over, the predictive character of the structural softness of the
material on the subsequent plastic activity of the glass former
holds even for relatively large �shift�4%.
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V. CONCLUSION AND PERSPECTIVES

We have shown in this paper that the elastic response of a
2D Lennard-Jones glass at very low temperature is heteroge-
neous. We have characterized the local elastic response by an
extensive study of the local elastic moduli as a function of
the coarse-graining scale. We have shown that at a very small
scale �W�5� the elastic response deviates from Hooke’s law,
and that on an intermediate scale �5�W�20� the system is
not homogeneous and not isotropic but becomes approxi-
mately homogeneous beyond this scale. However, it is diffi-
cult to identify a well defined characteristic scale because all
the quantities probed in this case are power-law dependent of
the coarse-graining scale. By considering the spatial oscilla-
tions visible in the autocorrelation function of the local shear
modulus for W�10, we have decided to compute the local
moduli at the scale W=5 where Hooke’s law applies, and
where the heterogeneities are clearly identified.

We have shown that these heterogeneities can be related
with the local dynamics of the particles. Regions with very
low local shear modulus give rise to enhanced nonaffine dis-
placements and plastic activity. Moreover, the relaxation of
low moduli during plastic deformation of the sample is faster
than the relaxation of rigid zones, and the system seems to be
decomposed into fast evolving regions with low local shear
modulus �c1�c1�, and rigid frozen regions with high local
shear moduli �c1�c1�. The occurrence of large plastic events

seems to be associated with a large proportion of soft regions
in the system �Fig. 10�.

We have also shown that the local shear moduli can be
used as a predictive local criterion for plasticity. This is true
on very short strain scales, as we have seen in that the lowest
local shear modulus evolves in a systematic way before a
plastic event, with a decrease taking place over a typical
strain of ��0.2% before a plastic event. Interestingly, this is
also true on larger strain scales, as a site with an initially low
modulus tends to remain plastically active over long periods
of strain, of the order of a few percent. However, it is more
difficult to identify the type of plastic events in which a site
will be involved, which may vary considerably in size from
isolated quadrupolar events to elementary shear bands span-
ning the whole system. The present work is a step in order to
predict plastic activity, and to relate it with the heterogeneous
elastic structure in the system. Further studies will be
needed, in order to make contact with existing models of
plasticity and rheology of amorphous systems. In particular,
such models �26,80� do not in general introduce the possibil-
ity of heterogeneous elasticity. It will be interesting to test
their sensitivity to this ingredient, and to see if they are able
to reproduce the observed correlation between low elastic
constants and high plastic activity.

The elastic structure in the system �the set of local elastic
moduli� is computed by the way of macroscopic deforma-
tions and can result from collective effect. We do not know at
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the moment if this measurement can be related with a more
local and simpler structural property of the samples studied.
In the case of model silicon systems, where local tetrahedral
order due to the covalent bound is important, it has been
shown �83� that plastic activity is related with the occurrence
of local coordination defects and unusual atomic environ-
ment. It is not the case in Lennard-Jones glasses. It would be
very interesting to see if a criterion based on the lowest local
elastic shear modulus would be also valid in other systems,
independent on the local directionality of bounds.

The relation between plastic activity and elastic structure
opens new possibilities in the theoretical and experimental
study of the deformation of glasses. From a theoretical point
of view, the detailed study of the dynamical evolution of
local elastic moduli should allow construction of a model as
we have already done for the local stress components �74�,

including a criterion for local plastic rearrangement. From an
experimental point of view, this study shows that the reso-
lution for the measurement of a local elastic modulus should
be less than ten interatomic distances, in order to include a
description of the relevant scales of elastic heterogeneities.
New experimental methods have been proposed recently in
order to evaluate the deformation at the nanometer scale
�86�. This study should encourage continuation in this way.
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